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We propose a unified description of the known forces. We formulate a quantum 
relativistic spacetime as a (directed) graph of causal arrows with indefinite 
Hilbert metric, whose physical meaning is given. The simplest graph whose 
quantum relativity supports conservation of energy-momentum also supports a 
semidirect product of the cyclic groups 2 and 3 and the four-group 22. We 
call these lattice degrees of freedom (permutational) twain, trine, and spin. 
Quantized 22 becomes Lorentz Spin(4). Gauged, the energy-momentum and 
spin groups lead to gravity and torsion, and twain and trine lead to SU 2 and 
SU 3. We infer that color is actually trine, and the z component of isospin 
is twain. 

In this paper we formulate a concept of quantum relativity and apply 
it to the simplest spacetime that supports energy-momentum conservation, 
based on N 4, the quadruples of natural numbers. We describe how we 
quantize these structures (Section 1), the quantum structures that result 
(Section 2), and how these condense into just the right spacetime and 
standard-model invariance and gauge groups (Section 3). 

1. Q U A N T U M  R E L A T I V I T Y  

From canonical quantization we abstract Dirac's quantum transfor- 
mation theory, regarded as an extension of relativity. We define a non- 
commutative operator algebra for nonquantum theories also, similar to 
that of Sudarshan (1990), and regard every nonquantum theory as ob- 
tained from a quantum theory by restricting experiments to one frame. 
This restriction loses phase information. To quantize is to requantize: to 

1School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332-0430. 

1801 

0020-7748/93/1000-1801507.00/0 �9 1993 Plenum Publishing Corporation 
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restore the phases that are lost by this restriction and then to relativize 
the frame. This leaves the operator algebra projectively unchanged, since 
its phases have no meaning in the nonquantum theory, and relativizes 
the subalgebra of variables, which special and general relativity leave 
absolute. 

This process extends both relativity, which leaves the frame algebra 
fixed, and canonical quantization, which applies only to mechanical sys- 
tems. Therefore we call it quantum relativity. It applies to any algebraic 
structure, including graphs, semigroups, and groups, and so to any alge- 
braic spacetime model. 

1.1. Nonquantum Operators 

An arrow (b ~ a) is a mapping a ~ b  with one point domain a and 
one-point codomain and range b, so that (b ~ a)a = b; or else it is the 
arrow 0. The arrow b ~ a represents an impulsive action that sends a 
system from state a to b. The arrow 0 represents the impossible. We 
multiply arrows thus: 

(e ~ b)(b ~- a) = ( c  ~ a), (d +-- c)(b ~ a) = O = ( d  ~- e)b when e : ~ b  

(1) 

We write T ~ S for the set of  arrows from points of  S to points of T. Here 
S ~ S is a semigroup, the arrow semigroup (category) of S. 

By an operator of any nonquantum system we mean a formal linear 
combination of  arrows on its state space. The arrow algebra A is the linear 
space of all such operators, and the operator product extends the arrow 
product linearly. We write the operator algebra on a set S as 
A = (S ~ S)", the double prime indicating a double dual. A is the univer- 
sal covering algebra of  the semigroup S ~ S. We write (S ~ S) for the 
subsemigroup of identity arrows t ~ - s  with t = s sS .  Identity arrows 
represent sharp selection acts. They are minimal Hermitian idempotents in 
the commutative algebra C = (S ~ S)" called the f rame algebra. Most 
minimal Hermitian idempotents in A are outside C, but the nonquantum 
theory does not recognize them as selection acts. The quantum theory 
forgets C and puts all such operators on the same footing. 

We represent any complex function ).(s) on S by the operator 
2 = ~s~s 2(s)(s ~ s)C. We represent classes by their characteristic functions 
and thus by operators in C. Thus C includes and defines the elementary 
class and predicate algebra of  the system. 

We represent any mapping f : S ~ S  by the linear operator 
f = ~ s  ( f ( s )  ~ s) cA ,  not necessarily in the frame algebra. None of  this has 
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anything to do with quantum theory, as Sudarshan (1990) pointed out. It 
describes nonquantum theory, too. 

Furthermore, we associate a Grassmann creator s and its adjoint s t 
with each state seS ,  and identify an arrow (b ~ a) with the Grassmann 
product ba t of an annihilator a t for the tail and a creator b for the head. 
To treat an arrow ba t as a unity in all further multiplications we brace it 
as {bat}. The associative law of multiplication stops at the brace, as in set 
theory. We extend the brace operator to a linear operator: 
{~ + t}  = {a} + {t}. Thus the directed graph of [~4 is represented by the 
Grassmann product of braced arrows joining vertices to their children 
(next future vertices). 

Quantum relativity preserves the operator algebra A, but relativizes 
the frame algebra C. We suppose that each maximal commutative subalge- 
bra is the frame algebra for some maximal quantum experimenter. Quan- 
tum relativity is frame relativity. Since the elements of A represent acts 
while those of C represent states, and A is absolute while C is rela- 
tive, quantum relativity is based on acts rather than states, in the same 
sense that special relativity is based on spacetime events rather than space 
points. 

We may think of the points s e S  as basis vectors in the space S" of 
formal linear combinations of points of S, and arrows as linear operators 
on S". The arrow functor is cogredient to its head and contragredient to its 
tail. Thus under the transformation of one point a by a ~ 2a, arrows 
transform according to (a ~ - b ) ~ 2 ( a ~ b ) ,  (b ~ a)~�89 ~ a), and 
(a ~ a) is invariant. Therefore the nonquantum logic is insensitive to the 
phases and magnitudes of the states seA .  As long as we stay in the 
nonquantum frame based on identity arrows s ~ s, superpositions do not 
occur, we cannot know the magnitudes and phases of the basis vectors s, 
and their relations can only be known projectively (up to factors). Anti- 
commutation of states s, s '  is indistinguishable from commutation, for 
example. 

1.2. Rephasing 

Nonquantum logic is quantum logic with an absolute frame. When we 
relativize the absolute frame C and do experiments that cross frames, the 
phases and magnitudes of the matrix elements of operators in A matter 
physically and must be restored to agree with experiment. We call this 
process rephasing. Before we relativize the frame, rephasing leaves the 
theory nonquantum and unchanged in content. For example, canonical 
quantization rephases the products of the momentum-and-position har- 
monics exp i(ax + tip), for all ~, t e~,  which commute projectively before 
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and after quantization. Similarly, we quantum relativize any algebraic 
structure by forming its arrow algebra, rephasing, and relativizing the 
frame. Rephasing is most of the work. 

1.3. Quantum Group 

The algebraic quantization we proposed earlier (Finkelstein, 1972) 
replaced a commutative coordinate algebra by a noncommutative algebra 
rather than relativizing it. This resulted in a concept of quantum semigroup 
("q dynamics") defined by a coproduct on the noncommutative coordinate 
algebra. Quantum relativity leads to a new concept of quantum semigroup 
and quantum group with a greater invariance. 

We now quantum relativize the concept of group to obtain a concept 
of quantum group, and the standard model groups to find corresponding 
quantum groups. We regard the random element of the group as a physical 
entity, the operon of the group. The group operon becomes a quantum 
when we quantize the group, just as the electron is the quantum, not its 
algebra. 

The operator algebra B = (G ~ G)" for a nonquantum semigroup G 
with semigroup product b o a has two natural products. The first product is 
that already defined for any operator algebra. We call it the series product 
to distinguish it from the second, which we call the parallel product. The 
parallel product of (d ~ c) and (b ~ a) is 

(d ~ c) o (b ~- a) .'-- (d o b ~- c o a) (2) 

A linear space B with two unital associative algebra products, called 
series and parallel, we call a double algebra. Its elements we call doable 
operators. 

Consider first the operator algebra B = (G *- G)" of a semigroup. B is 
a double algebra with a preferred frame C = (G ~ G)" and a natural t-op- 
eration, arrow reversal combined with complex conjugation. The identity 
of the series product of B is the usual identity operator I = ~gEc (g ~- g). 
The identity of the parallel product of B is U = (u ~ u), called the unit 
operator, where u is the identity group element. U is the projection of the 
group unit. The double operator representing the inverse g ~ g-1 is 

Inv = ~ ( g - '  ~ g )~B  (3) 
G 

also called the antipode. For any ~ cA we designate Inv ~ Inv by ~Jnv. The 
inverse obeys 

Inv Inv = L 0~ l n v  o 0~ = U = ~ o 0~ l n v ,  (]~)lnv = ~,nvfll,v (4) 
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and 

Inv = Inv * (5) 

The frame C is generated by the identity arrows g ~ g. Because our 
product is not that of a Hopf  bialgebra, these are not the usual defining 
properties of an antipode. 

We designate the two exponential operations based on the series 
product /~  and parallel product /~ o ~ by exp: B ~ B  and Exp: B--*B, 
respectively. 

Now we relativize the frame. A quantum group (actually, operon) is 
then defined by a double algebra B with an element Inv~B obeying (2), B 
defines the operon in the same sense that an algebra of  operators defines a 
quantum. Without Inv, a double algebra defines a quantum monoid. A 
quantum "~-group is a quantum group with an adjoint t: B ~ B obeying (3). 

We mention briefly the difference between this concept of  q group and 
the previous one (Finkelstein, 1972). Let A: G |  be the equalizer 
product on G, defined by g Ah = O, g ~ h, g A g  = g. This product depends 
on the logical structure of G, not the algebraic. One may define a product 
on B = (G ~- G)" by 

(d ~ c) o' (b ~ a ) : = ( d  o b ~ C A a )  (6) 

This is the pointwise product of G-valued functions on G. It depends on 
the phases, and breaks frame invariance, but it was appropriate for the old 
quantization process. We no longer use this product. 

While the arrow process transforms any nonquantum semigroup into 
a unique quantum monoid, and any nonquantum group into a unique 
quantum group, it alone never seems to give the quantum group of physical 
interest, which always seems to require rephasing. 

1.4. Coherent Group 

To form a classical Lie group from a quantum or nonquantum group 
G we generalize coherent states. We use f in i t e  generators of the double 
algebra B as inf ini tesimal  generators of a classical Lie group, called a 
coherent group of G. Call F a core of the double algebra B when: 

1. F is a linear subspace of B. 
2. The least sub-double-algebra of B that includes F is B itself. 
3. F is a double Lie algebra (closed under both the operator commu- 

t a t o r / ~  -~]~ and the group commutator/~ o ~ - ~  o ]~). 
4. No proper subset of F obeys 1-3. 
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By a coherent unitary group cG of a #-group (or monoid) G, quantum 
or not, with core F, we mean a Lie group of parallel exponentials 
E x p ( y -  V t) of elements V ~F c B. Whatever G is, cG is a nonquantum 
group. In addition, it has a form factor. 

Notice how this concept generalizes the coherent states of a harmonic 
oscillator. In the present theory, we take the nonquantum semigroup ~ of 
the natural numbers under addition, abstracted from the energy levels of 
the oscillator, and the level number n ~ ,  as basic for the oscillator, not 
the position and momentum, which arise after quantization and conden- 
sation. The operator algebra is B = ( ~  , - -~)" .  As core we take the 
excitation operator c:n~--~n+l; its adjoint c t, rephased so that 
c t c -  cct= ~1; the unit operator 1; and linear combinations thereof. The 
preferred coordinate frame C of B is the number frame, the subalge- 
bra generated by the number operator n = cc t. The parallel product on 
B is defined by (dc~f)o (bat)= (db ~-a~c*). This is the Wick normal- 
order product. All this expresses a nonquantum theory. We quantize 
by relativizing the frame. The coherent unitary group then consists of 
the exponentials expo(eC-c~*c*+ iq~) for all complex e and real ~0. The 
usual coherent states result from applying this group of operators to the 
point n = 0. 

A coherent group of a quantum monoid can acquire physical meaning 
if it describes a physical condensation. In nature, however, condensation is 
not such a unique and simple mathematical process, but a complex 
sequential physical one. Different degrees of freedom freeze at different 
critical temperatures as a structure cools, their critical temperatures are 
sharply defined only for large aggregations, and in fermionic quantum 
structures pairing may take place before condensation. Group theory 
can provide a list of possible sequences of successive group reduction, but 
only a good experiment or dynamical calculation can tell us what sequence 
of coherent structures will actually be seen when a complex aggregate 
cools. 

The coherent group is a nonsingular structure with generalized Gaus- 
sian form factors. The continuum limit is the singular limit as the scale time 
or chronon �9 ---, 0. 

The whole procedure that goes from some discrete skeleton theory 
(here the monoid ~4) to a quantum theory, then to its coherent states, and 
finally to the singular limit of these coherent states (here ~4) as the 
form-factor range (here r) approaches zero, we shall call the qcs (quantiza- 
tion-condensation-singularization) process. It represents a physical Bose- 
Einstein-type condensation followed by observation under limited 
resolution. 



Quantum Relativity 1807 

2. QUANTUM SPACETIME 

We now apply quantum relativity to a spacetime network model based 
on a directed graph of causal arrows. We have hypothesized that the 
Minkowski vacuum is a singular limit (z ~ 0) of a coherent condensed state 
of a relativistic quantum network (Finkelstein, 1988). The simplest graph 
whose quantum theory supports energy-momentum conservation is that of 
1~4. We call this graph 6N 4 (rather than I~ 4) because it consists of the 
directed edges or arrows of N 4 (rather than the points). Its quantum 
relativized form is q6 ~4. 

Here we show that defects in q6N 4 support the spacetime Poincar6 
group and exactly the unitary gauge groups of the standard model. While 
we study the simplest possible model, the results hold for many causal 
network structures with the same overall N 4 symmetry semigroup. 

2.1. The Classical Lattice 

The simplest discrete spacetime model that allows for conservation 
of energy-momentum (the observed translation group) after the qcs 
process is the classical semi-infinite hypercubical checkerboard lattice 
N4 = {n~, ] n , e N ,  # = 1, 2, 3, 4}. We define four children of any event rt~[~ 4 
by adding 1 to any coordinate n u. We interpret the four axes of N 4 as four 
symmetrically disposed null displacements, as of four light pulses emitted 
simultaneously from the center of a regular tetrahedron and absorbed at its 
vertices. Then the Minkowskian metric assumes the symmetric null form 

g , v =  1 0 (7) 

1 1 

Unlike the Minkowski form, which distinguishes one axis from the 
other three, this form is invariant under the group $4 of all permutations 
of the four coordinate axes. All its basis vectors are physical, while three 
out of four Minkowski basis vectors are supraluminal. 

2.2. The Quantum Lattice 

We now quantum relativize the classical semigroup ~j4. We first form 
its arrow algebra A, generated by the arrows (n '+-n) ,  n, ?/,~[~4 and its 
frame algebra C generated by the identity arrows (n ,-- n). Before quantiz- 
ing [r w e  introduce four generators t~ like the excitation operators of four 
linear harmonic oscillators, obeying, however, the Lorentz covariant com- 
mutation relations a n d  subsidiary condition 

z,,*t,, = 1,,l,* + rg,,v, zS[0] = 0  (8) 
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where [0] is the origin n = 0 of ~4. Here the indefinite metric guy enters 
where a delta function 6~v would in canonical commutation relations. This 
implies that the metric defined by t is indefinite. The parallel product fl o 
on A is the normally ordered product (annihilators to the right of creators). 
In the spacetime interpretation the parameter z is a fundamental time, the 
chronon. 

To quantize, we forget C. We allow any frame, including the usual 
position or momentum frames of  the quantum harmonic oscillators. 

2.3. The Quantum Group of the Quantum Lattice 

Now we quantize the symmetry monoid of  the spacetime. The symme- 
try transformations of the lattice ~4 form the monoid G = $4 Ix ~ 4  the 
semidirect product of the symmetric group (permuting the four lattice axes) 
with the translation monoid [~4. G decomposes into the semidirect product 

G = 2  Ix (3 Ix (22 IX N4)) (9) 

Here 2 and 3 are the groups of the integers modulo 2 and 3, respectively. 
2 is the quotient of $4 by the alternating group A4 and acts trivially on 
A 4 = 3  tx (22 tx N4). 3 is the quotient of A4 by the four-group 22= 
{1, Xl, X2, X3} of four commuting square roots of 1 and acts trivially on 
22 . These groups are composed of classes of  permutations of the axes 1234 
as follows: 

22 = the axis permutations X1 = (14)(23), X2 = (24)(13), )(3 = (34)(12) 
and the identity 1. These are all the symmetry rotations X of a tetrahedron 
that obey X2=  1. We call this network degree of freedom spin. 

3 --- cosets of 22 by the discrete rotations Y of the tetrahedron of 22 by 
_ 120 ~ or 0 ~ around a line from the center to one vertex, obeying y3 = 1. 
We call this network degree of freedom trine ["a group of three; ... the 
aspect of two planets when 120 ~ apart" (American Heritage Dictionary)]. 

2 ~ cosets of 3 by the axis permutation (12) and the identity 1. Here 
1 s2  is the class of proper transformations, with determinant + 1; - 1 s2  is 
the class of improper transformations with determinant - 1 ,  respectively. 
This network degree of freedom we call twain. 

This semifactorization of the group $4 of order 4[ = 4 x 3 x 2 into 
groups of order 4, 3, and 2 is the famous one that Galois used to prove the 
solvability of the general quartic by radicals. The general quintic or 
higher-degree equation is not  solvable by radicals because no such semifac- 
torization into commutative groups exists for higher dimensions. 

Before quantizing spin 22 we rephase the three elements X~ f r o m  
commuting square roots of + 1 to anticommuting square roots of - 1. W e  
then represent them by the three Pauli matrices ia~ (c~ = 1, 2, 3). We 
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represent the identity in 22 by i l. These four modes generate the double 
algebra (2 2 ~ 22) ", which is the algebra of linear transformations M2 ",-- M2 
of the Pauli 2 x 2 spin-matrix algebra 3/2. The elements of (22 ~-- 22)" may 
be called double spin operators. Now each Pauli matrix ~ defines a state 
of the nonquantum 2 2 operon. The parallel product of the double algebra 
is induced by the operator product of M2, by 

( ~  ~ ~.) o ( ~  ~ ~ )  = (cr~G~ ~ G , ~ )  (10) 

The inverse in this double algebra is the identity, the group being 
involutory: 

Inv = I (11) 

We supply the double algebra of double spin operators with the adjoint t 
induced by the Pauli adjoint on M 2, or* = ~a*re. This implies an indefinite 
metric. 

We now quantize spin 2 2 by relativizing the frame. (11) means that q2 
is involutory. 

2.4. The Lattice Condensate 

Let us now form the coherent condensate of the quantum lattice q[N 4 
and its symmetry monoid qG = qS4 Ix q[N 4. 

We have already made sure that the spacetime-energy-momentum 
translation group ~4 X [~4 emerges as the singular limit of the coherent 
translation group {expo(2Uz, - H.c.) l 2~'EC, # = 1, 2, 3, 4} of the quantum 
monoid qlN 4. 

Similarly, the Lorentz group now emerges as the classical limit of the 
quantum four-group q2 2. The coherent states exp0(0~a~ - 0~*~ t) make up 
exactly the spin group Spin 4. Quantum spin is the outcome of the network 
spin degree of freedom. 

That is, just as there is a qcs process that transforms [~4 into ~4, the, re 
is one that transforms 2 2 into the Lorentz spin group of SO(l,  3) (with the 
choice of metric given). For this it is important that $4 respects the 
symmetric null metric guy. 

2.5. Unification of the Metrics 

The indefinite spacetime metric of Minkowski is inextricably linked to 
an indefinite quantum (pseudo-Hilbert space) metric in this theory, even 
more so than in quantum electrodynamics. The spacetime metric is merely 
the quantum metric evaluated between two ~b vectors representing con- 
densed coherent states. It seems necessary to give a consistent physical 
interpretation for the ~ vectors of norm ~,*r = 0 in such a metric. 
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We may found ordinary quantum mechanics on the following opera- 
tional definitions of qJ vectors, their dual, ~0, their contraction q~ : ~O, and the 
adjoint t: 

1. Each nonzero ~k vector represents an input operation, and each 
nonzero dual vector represents an outtake operation. 

2. If  N = (~O * : ~b)(~0 * : r is the number of trials of a transition q~ +-- ~9, 
then T = (r : r : ~p) is the expectation value of the number of transi- 
tions that actually occur. 

The usual transition probability P is the ratio T/N. If  ~0 t~k = 0, then 
N = 0. There is no contradiction; the transition is simply never tried. A 
quantum theory with indefinite metric includes some experiments with 
repetition rate 0. 

This makes physical sense. For example, if we do a crossed-polarizer 
experiment with polarizers traveling at speed V down the optical bench 
relative to us, the repetition rate of the experiment approaches 0 as V ~ c, 
and in the limit no photon crosses the first polarizer and the transition 
through the second is never tried. Thus it is not surprising that the 
quantum prohibition of transitions with null norm is connected with the 
speed limit of special relativity. An indefinite metric implies that besides the 
usual forbidden, allowed, and assured quantum transitions, there are some 
that we cannot even try. 

We did not expect this synthesis of quantum and spacetime concepts. 
We started from the clash between unitarity, finiteness, and Lorentz 
invariance, there being no finite-dimensional unitary representations of 
Spin(4). On the basis of Einstein locality, we half expected that the metric 
t ,  a seriously nonlocal concept, would become a dynamical variable in a 
more flexible quantum logic (Finkelstein, 1968). We expected another level 
of theory below the network topology, giving the dynamics of the network 
quantum metric, and could not imagine how it would look. We saw no 
physical meaning for an indefinite metric. 

Thus we thought the new quantum metric would inherit definite- 
ness from the usual quantum metric and variability from the spacetime 
metric. Instead it inherits constancy from the usual quantum metric and 
indefiniteness from the spacetime metric. The emergent gravitational 
spacetime metric varies merely because the network does, somewhat as 
the intrinsic metric of a surface imbedded in a larger Euclidean space 
varies because the subspace does. This means that there is a chance that 
we have already reached a fundamental level of theory. We now face a 
familiar dilemma: on the one hand the improbability of any one absolute 
dynamical law, and on the other the problem of formulating physics 
without one. 
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3. GAUGE FIELDS 2 

In addition to translation and spin degrees of  freedom, particles have 
a triplet degree of  freedom (color) on which strong SU3 acts and a doublet 
one (weak isospin) on which weak SU2 and UI act. These may be  trine and 
twain. At the same time, the gravity gauge group derives from N 4 and the 
torsional gauge group derives from spin 22 in $4. This exhausts the 
symmetries of  [~4. 

There are at least three ways in which a group G occurs in a space X: 
As coordinate: We may describe a local object by a group element that 

transforms a specimen at the origin into the actual object. Here G is a 
coordinate space. There are additional invariant coordinates distinguishing 
the specimens at the origin. 

As structural group: We may describe a string defect by the group 
element acting on a test cell that we carry around the string. G is then the 
structural group of a bundle. 

As gauge group: We may go from invariance under G to invariance 
under the function group G x of group elements varying with position in the 
lattice. 

First we use G as a quantum space X = G for a defect, which will then 
have the twain and trine degrees of  freedom of $4, as well as spin and 
translation. Then we use G as the basis for a gauge group. In a nonquan- 
turn theory, the gauge group based on a Lie group G is G x, where X is the 
spacetimel Here we take X = G and understand G 6 as (G ~ G)", which is 
defined for quantum groups, too. In a principal bundle the fiber is the 
structural group; here the base is also. Then 2 becomes 2 ~- 2, 3 becomes 
3 ~- 3, 22 becomes 22 ~- 2 ~, and N 4 becomes ~4 ~ N4. Under qcs the arrow 
semigroup n ~  n becomes Un (GL,, for complex parameters),  N4,, --- [~4 
becomes R 4 ~  ~4, the familiar gauge group of gravity. Thus the factor 
2 ~ 2 becomes GL2 gauge and 3 * - 3  becomes GL 3 gauge, whose real 
compact  forms are U2 and U3, respectively. We identify these with weak U2 
and strong U3. Thus twain is weak isospin and trine is color. Presumably 
22 ~ 22 becomes a torsional gauge. 

We mention just two of many questions still unresolved. Is the UI in 
our U2 weak hypercharge? I f  so, what is the Ut in our U37 Perhaps a 
dynamical theory can say. 

2The results of Section 3 were found after the IQSA Meeting, where we presented only some 
of Sections 1 and 2. 
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4. SUMMARY 

Since we do not have the dynamical action principle yet, there is not 
yet a unified theory of the known forces, but at least it is a unified 
description of them. To recapitulate: The simplest graph that supports 
energy-momentum conservation after the qcs process is 8~ 4. Its unit cell is 
the discrete hypercube 2 4 of 16 points, partially ordered from (0, 0, 0, 0) to 
(1, 1, 1, 1) by increasing individual coordinates. The symmetry group of the 
directed graph 624 is the symmetric group S 4 o n  its four axes. This is the 
famous semidirect product $4 = 2 Ix (3 rx 22) of the cyclic groups 2 and 3 
and the four-group 22= 2 x 2. We call the physical degrees of freedom 
corresponding to 2, 3 and 2 2 twain, trine, and spin, respectively. Similarly, 
the symmetries of the network N 4 consist of the permutations $4 and the 
future translations N 4. Coherent states of the quantum translation semi- 
group q[N 4 form Minkowski spacetime, and coherent states of the quantum 
spin group q22 form the Lorentz spin group. This leaves twain and trine 
uninterpreted. Besides the translation and spin degrees of freedom, particles 
have a strong three-valuedness on which strong SU3 acts and a weak 
two-valuedness on which weak SU2 acts. We hypothezised that these are 
permutational trine and twain, just as the Lorentz spin two-valuedness is 
the spin of $4 and energy-momentum is in N 4. We then computed the 
gauge group of the defect space G = $4 ix N 4 and found that it contains 
just the unitary groups U], U2, and U3 in addition to spacetime gauge 
groups leading to torsion and gravity. We interpret the groups U2 of twain 
and U3 of trine modulo their centers U~ as the weak isospin SU2 and strong 
color SU3. 

Some crucial elements of the theory will soon support or destroy this 
interpretation. 

1. In general, the factor B in a semidirect product B ix A acts 
nontrivially on the factor A. In the gauge theory, this means that the gauge 
field for A is a source for that of B. In the present theory, 2 and 3 act 
trivially on the next group in the semidirect product 2 ix (3 Ix (2 2 IX ~4) ,  

while 2 2 acts nontrivially on ~4. This must determine which of the gauge 
fields are sources for the others. The results must be consistent with the fact 
that all fields are sources Of gravity, that the color gluons carry no weak 
isospin, that color and weak isospin are Lorentz scalars, and so forth. 
There are eight such determinations to check with known properties, and 
four determinations about torsion that are new. (One already expects 
torsion to couple to itself and gravity.) These straightforward determina- 
tions are under way. 

2. Twain changes under parity while trine does not. 
Many networks share the symmetries of ~4. Physical particles are 

modulations in the high-frequency carried provided by the quantum net- 
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work, and if the above tests are met, one way to tell which network occurs 
in nature is to compute the coupling constants and masses (and Weinberg 
angles) of  such modulations and compare them with experience. That  will 
also determine the size of  the chronon z. We cannot do this yet. In 
addition, the vacuum is possibly described not by a single network like 
quantum fin 4, but by a superposition of  many. 

To put it simply, we conclude that spacetime is like a quantum 
relativistic Rubik cubic lattice with an indefinite Hilbert metric. This simile 
has not yet been used up. S. Golomb (1982; see also Rubik, 1987) 
semifactorized $3 in the theory of the Rubik cubic lattice much as we 
semifactorize $4 in our null hypercubical lattice. Both N 3 and N 4 have the 
suggestive symmetries 2 (twain) and 3 (trine); no other powers of  N do. 
Gravity comes from lattice translations and torsion from spin. Color is 
trine, and the z component  of  weak isospin is twain. 

A fuller account will appear elsewhere (Finkelstein, 1993). 
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